The Future of Steel: Green Hydrogen, Electric Arc Furnaces & Sustainability

saurabh gir

The steel industry is undergoing a transformation, with sustainability at its core. The Indian government has introduced multiple initiatives to promote **Green Steel**, including the **Green Steel Mission** with an estimated cost of ₹15,000 crore. The mission includes a **PLI scheme for Green Steel**, incentives for renewable energy, and mandates for government agencies to procure green steel.

Mydrogen & Electric Arc Furnaces: The Future of Steel Production

Steel production is evolving with groundbreaking technologies. Hydrogen-based direct reduction (DRI) and Electric Arc Furnaces (EAFs) are emerging as key solutions to decarbonize the industry. Unlike conventional blast furnaces that rely on coal, hydrogen-based steelmaking can significantly reduce emissions.

Tata Steel, in a recent trial at its Jamshedpur plant, achieved a record-high hydrogen gas injection in its blast furnace, proving that hydrogen is the future of sustainable steelmaking.

Fata Steel tweeted today: "At Tata Steel, we continue to lead the way in sustainable steelmaking with a groundbreaking trial that achieved a record-high hydrogen gas injection in our Jamshedpur blast furnace."

Government's 37% Green Steel Procurement Mandate

The Indian government has taken a **bold step to boost demand for Green Steel**, proposing that **37% of government tenders** should be allocated to green steel. This policy shift will drive investments in sustainable steel production and encourage companies to adopt eco-friendly processes.

How Hydrogen & Electric Arc Furnaces Differ from Traditional Blast Furnaces

Factor	Traditional Blast Furnace	Hydrogen-Based/EAF Steelmaking +
Energy Source	Relies on coal (coke) for heat & chemical reduction.	Uses electricity (renewable/hydrogen- powered) for melting steel.
Power Requirements	Lower electricity demand (mainly for auxiliary operations).	High-voltage power systems needed for EAFs, requiring significant grid upgrades & transformers.
Heat Generation	Burning coke provides heat for melting iron ore.	Hydrogen reacts with oxygen, requiring specialized high-temperature refractory materials.

Electrical Infrastructure	Basic electrical distribution for auxiliary systems like conveyor belts, blowers, and casting machines.	Requires HV switchgear, transformers, and advanced power regulation for high-energy demand of EAFs.
Construction Materials	Thick refractory linings to withstand carbon- rich atmosphere of coke combustion.	New refractory materials needed to handle hydrogen-based reactions and high-temperature plasma arcs.
Automation & Sensors	Limited automation (focuses on flow control & safety).	Al-driven automation, real-time monitoring, and smart sensors to optimize energy use.
Cooling Systems	Uses water- cooled elements to manage high temperatures.	Advanced heat recovery & cooling mechanisms needed for hydrogen processing & arc furnace operations.
Carbon Emissions	High CO₂ emissions due to coke combustion.	Near-zero emissions if powered by green hydrogen & renewable electricity.

What Electrical & Construction Vendors Must Learn

- Electrical Vendors: Grid & Power Upgrades
- High-voltage power systems Need for substations,
 high-capacity transformers, and smart grids to handle
 increased electricity demand.
- Backup Energy Storage Integration of battery storage & renewable energy sources (solar/wind) to ensure power stability.
- Smart Control Systems Automated energy
 management & real-time load balancing for efficient furnace operation.
- Power Electronics & Switchgear Upgraded high-frequency switchgear to support EAF power surges & hydrogen electrolysis.
- ◆ Construction Companies: New Infrastructure & Safety Protocols
- Hydrogen-Ready Facilities Construction of hydrogen storage tanks, piping networks, and leak-proof fuel handling systems.
- Advanced Refractory Solutions Designing high-temp
 hydrogen-resistant furnace linings to withstand new

chemical reactions.

- Fire & Explosion Safety Hydrogen is more flammable than coke, requiring enhanced ventilation, leak detection, and explosion-proof designs.
- **Digital Integration IoT-powered** plant designs with **automated sensors, Al-driven maintenance**, and **real-time data analytics**.

K Green Steel Pioneers: Companies Leading the Change

- ◆ Tata Steel Aims for carbon neutrality by 2045, transitioning to hydrogen-based steelmaking and Electric Arc Furnaces (EAFs).
- ◆ JSW Steel Developing India's largest green hydrogen project, targeting a 42% CO₂ reduction by 2030.
- Gensol Engineering Setting up India's first green
 hydrogen-powered steel plant with 50 TPD capacity.

Ludhiana's Green Blast Furnace – A Milestone in Steelmaking

The **Ludhiana Steel Plant** is setting new benchmarks by implementing a **hydrogen-based Green Blast Furnace**, paving the way for large-scale decarbonization of steel production.

Understanding Tata Steel's Expansion Strategy

Tata Steel CEO T.V. Narendran recently emphasized the company's strategic, phased expansion approach, focusing on environmental clearances and detailed engineering before launching major projects. Key upcoming expansions:

- Neelachal Expansion From 1 MTPA → 5 MTPA, with
 a future goal of 10 MTPA.
- Phushan Plant Increasing capacity from 5 MTPA →7 MTPA.

Agenda 21: The Global Push for Sustainable Steel

Under Agenda 21, nations are focusing on sustainable industrialization and eco-friendly technologies. The shift towards hydrogen-based steel production aligns with India's commitment to reducing carbon emissions while maintaining industrial growth.

The Road Ahead

- Standardization & Quality Control: The government is ensuring quality through 151 BIS standards and strict import monitoring.
- Raw Material Security: Expanding domestic scrap recycling and exploring coking coal imports from Russia & Mongolia.
- Global Strategy: India is formulating a Steel Global Outlook Strategy, focusing on raw materials, investments, technology, and exports.

The transition to Green Steel is not just a policy shift but an industry-wide revolution. Companies that embrace hydrogen and electric furnace technologies today will lead the steel industry tomorrow.